Visualization of brain iron by mid-field MR.
نویسندگان
چکیده
Brain iron was visualized on a mid-field (0.5 T) scanner using a spin-echo pulse sequence. Methemoglobin was hyperintense on T1- and T2-weighted images. Deoxyhemoglobin, hemosiderin, and ferritin were seen as decreased intensity on T2-weighted images. The spin-echo pulse sequences were improved for identification of deoxyhemoglobin, hemosiderin, and ferritin by prolonging the TR to 3000 msec and the TE to 80-120 msec. Phase-encoding artifacts at the level of the sylvian fissures caused increased noise, obscuring the brain iron in the lentiform nuclei with the TE of 120 msec. This artifact was substantially reduced or eliminated by lowering the TE to 80 msec, changing the phase-encoding gradient to the Y axis, or using additional pulsing in the slice and read gradients. Use of either the improved spin-echo or gradient-echo pulse sequences on a mid-field MR scanner provides improved evaluation of brain iron.
منابع مشابه
SWI: Probe for neuroradiologists
Susceptibility-weighted imaging (SWI) has continued to develop into a powerful clinical tool to visualize venous structures and iron in the brain and to study diverse pathologic conditions. It is a new art which evaluates and exploits the properties of blood, iron and other tissues. It is a magnitude or filtered phase images or combination of both, obtained with high-resolution 3D fully velocit...
متن کاملSWI: Probe for neuroradiologists
Susceptibility-weighted imaging (SWI) has continued to develop into a powerful clinical tool to visualize venous structures and iron in the brain and to study diverse pathologic conditions. It is a new art which evaluates and exploits the properties of blood, iron and other tissues. It is a magnitude or filtered phase images or combination of both, obtained with high-resolution 3D fully velocit...
متن کاملSWI: Probe for neuroradiologists
Susceptibility-weighted imaging (SWI) has continued to develop into a powerful clinical tool to visualize venous structures and iron in the brain and to study diverse pathologic conditions. It is a new art which evaluates and exploits the properties of blood, iron and other tissues. It is a magnitude or filtered phase images or combination of both, obtained with high-resolution 3D fully velocit...
متن کاملSWI: Probe for neuroradiologists
Susceptibility-weighted imaging (SWI) has continued to develop into a powerful clinical tool to visualize venous structures and iron in the brain and to study diverse pathologic conditions. It is a new art which evaluates and exploits the properties of blood, iron and other tissues. It is a magnitude or filtered phase images or combination of both, obtained with high-resolution 3D fully velocit...
متن کاملEvaluation of tissue doppler echocardiography and T2* magnetic resonance imaging in iron load of patients with thalassemia major
Background: Iron-mediated cardiomyopathy is the main complication of thalassemia major (TM) patients. Therefore, there is an important clinical need in the early diagnosis and risk stratification of patients. The aim of this study was to evaluate the efficacy of tissue doppler imaging (TDI) to study cardiac iron overload in patients with TM using T2* magnetic resonance (MR) as the gold-standard...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- AJNR. American journal of neuroradiology
دوره 9 1 شماره
صفحات -
تاریخ انتشار 1988